
Cloud Offerings: A Systematic Review

Dr. Reema Ajmera
Asst. Professor

School of Computer Sciences and Applications,
JECRC University, Jaipur, India

Rudra Gautam
Application Architect

Vertex Business Services
Gurgaon, India

Abstract— Open source is one of the core foundations of
cloud computing. Early pioneer of the cloud utilized the freely
available, freely distributable model of open source to power
their vision and deployments- achieving a level of scale at a
bare-bones cost that had never been seen in the history of
computing. In this paper first we discuss cloud basic than we
move towards the offerings provided by various service
models.

Index Terms—Elasticity, pay-per-use, CAPEX, OPEX, ASP

I. INTRODUCTION

This paper describes, how cloud services are offered using
cloud computing as well as the different types of computing
clouds and their specifics. With the advent of cloud
computing the scenario of using and accessing of resources
i.e. servers, application and storage is changed significantly.
Gartner defines Cloud as a style of computing in which
scalable and elastic IT-enabled capabilities are delivered
as a service to external customers using Internet
technologies. Nowadays these are available on demand or
pay-per use basis. This feature separates Cloud from
traditional application service providers or pure
virtualization environment.
Elasticity – Elasticity is the degree to which a system is
able to adapt to workload changes by provisioning and de--
provisioning resources in an autonomic manner, such that at
each point in time the available re-sources match the current
demand as closely as possible.[1]
Applications that experience a higher load during a certain
time of the year, for example, can request more resources
only during these periods. Especially, for development and
test purposes, this property of clouds can make their use
very profitable.
Pay-per-use – no monthly charge for resource use is
applied. Costs only arise for resources during their usage
times. Therefore, no long-term upfront investments
(CAPEX) in IT resources are required anymore. Instead,
only the operational costs (OPEX) of these resources arise.
Standardization – Cloud provides image-based system
management standardizes the used hardware software
stacks that are used in cloud applications through the use of
hardware virtualization.

II. CLOUD SERVICE MODELS

Cloud Service Models describe the different ways to
offering resources served as a service by the many cloud
service provider. On the basis of the portion of the
application stack that is controlled by the provider, one
differentiates between Infrastructure, Platform, Software, or

Composition as a Service (IaaS, PaaS, SaaS, CaaS
respectively and many more).

Fig.1- Cloud Application Stack

Cloud Computing is offered in various models which
includes:
Infrastructure as a Service (IaaS)
IaaS (Infrastructure as a Service) is when the responsibility
of the equipment is outsourced to the Service Provider. The
Service Provider not only owns the equipment but will also
be responsible for its running and maintenance, where the
consumer will be charged on a ‘pay as you use’ basis and
not concerned about infrastructure. IaaS is often offered as
a horizontally integrated service that includes not only the
server and storage but also the connectivity domains. In
IaaS, Access control is added to an elastic infrastructure and
the resource management is extended to isolate users from
each other. The monitoring component collects additional
information to support pay-per-use billing.

Fig.2- IaaS Working Model

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4095

It controls authentication of user and control their usage of
the API during the management of (virtual) server images
and the starting/stopping of (virtual) servers. Furthermore,
the monitoring component is extended to support billing
based on accesses to the API as well as the amount of used
resources.
Infrastructure as a Service may be part of the offerings that
form a public, private, or hybrid cloud. The first and still
the most dominant provider of IaaS is Amazon EC2.
Platform as a Service (PaaS)
PaaS provides the capability for consumers to have
applications deployed without the burden and cost of
buying and managing the hardware and software, these are
either consumer created or acquired web applications or
services that are entirely accessible from the Internet. PaaS
facilitates immediate business requirements such as
application design, development and testing at a fraction of
the normal cost.
The platform itself therefore has to be made multi tenant-
aware, so that software components cannot access data or
functionality and do not influence the performance of other
users’ software components. Elasticity of the hosted
components managed and enabled automatically [3]. To
achieve proper functionality an API allows users to deploy
software components to a Platform as a Service offering,
register and configure other platform services for
communication e.g., message queues, storage e.g., block
storage, and routing e.g., realized in an enterprise service
bus.
Accesses to deployed software components and registered
platform services are controlled to ensure isolation of users
and consumers. The middleware components, such as
applications servers, enterprise service busses, and
messaging systems are extended to assure equivalent
performance to all users. Software components are often
created using specific development environments or
libraries to ensure certain component properties, such as
statelessness for example, to enable a platform controlled
elasticity of deployed applications. Billing services, also
offered by the platform, are often based on the amount of
storage used, number of messages sent, or accesses to the
hosted services.

Fig.3- PaaS Working Model

The Google App Engine and Salesforce’s Force.com
platform are pure PaaS offering where the user is unaware
of the underlying infrastructure or its management.

Software as a Service (SaaS)
Software as a service (SaaS) is the ability for a consumer to
use on demand software that is provided by the service
provider via a thin client device e.g. a web browser over the
Internet. With SaaS the consumer has not only no
management or control of the infrastructure such as the
storage, servers, network, or operating systems, but also no
control over the application’s capabilities. Culled from what
were originally referred to as (ASPs) Application Service
Providers, SaaS is a quick and efficient delivery model for
key business applications such as customer relationship
management (CRM), enterprise resource planning (ERP),
HR and payroll and many more.
A user interface or an API is used to access the Software as
a Service. Access is controlled to ensure the isolation of
multiple users while the desired customization is stored in a
central database that controls how shared components
behave.

Fig.4- SaaS Working Model

The software provides functionality that is integrated with a
user’s application that he runs on his own premise. Access
to the hosted software is controlled to avoid that users can
access other users’ data or influence the performance that
others experience. The customizations specified by users
are stored in a database and are accessed from software
components to determine their behavior.
The components out of which the offered software is
comprised can be implemented accordingly to multi-
tenancy patterns to ensure the required multi-tenant
awareness.
Software as a Service may be part of the offerings that form
a public, private, or hybrid cloud. The first significant
provider of SaaS was Saleforce’s web-based CRM software
[2].
Composite as a Service (CaaS)
Different provider supplied services shall be offered to
users that are isolated from each other on a pay-per-use
basis. These users shall be enabled to create individual
compositions of the provider supplied services to meet their
functional and service level requirements.
Individualization of IT services regarding offered
functionality and service levels often requires changes to
the service implementation and the structure of the hosting
environment. A good alignment of user requirements and
the offered services is however mandatory to increase the
addressable market. The service provider therefore has to
integrate functionally equivalent services assuring different
service levels and run them in different hosting

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4096

environments. However, creating all possible combinations
of services to be selected from users is often unfeasible.
Users may create custom compositions of provider supplied
services residing on the software, platform, or infrastructure
layer. These customizations are again hosted by the
provider.

Fig.5- CaaS Working Model

The customer composes services offered by the provider
to reflect the functional and service levels that he requires.
This composition is uploaded to the provider and stored in a
composition database. Access control ensures that the data
and compositions of multiple users remain isolated. A user
accesses a composition either through a user interface or an
API depending on the type of service that is offered by the
composition.

A runtime is included to execute the customer specified
compositions. Different variations of th`is runtime could be
available. For example, a CaaS provider could provide a
BPEL or a Java Engine.
CaaS is still an ongoing researchsubject and CaaS is already
offered as online platforms that allow modeling and
execution of business processes, such as RunMyProcess ,
Cordys Process Factory , or Intalio’s online modeling ,
Microsoft’s process modeling capabilities, named
Sharepoint Designer, also form a CaaS offering.
Except above mentioned service models some of other
emerging models are as given below:
Monitoring as a Service (MaaS)
Monitoring as a Service (MaaS) is at present still an
emerging piece of the Cloud jigsaw but an integral one for
the future. In the same way that businesses realised that
their infrastructure and key applications required
monitoring tools that would ensure the proactive
elimination of any downtime risks, Monitoring as a Service
provides the option to offload a large majority of those
costs by having it run as a service as opposed to a fully
invested in house tool. So for example by log`ging onto a
thin client or central web based dashboard which is hosted
by the service provider, the consumer can monitor the status
of their key applications regardless of location.
Communication as a Service (CaaS)
Communication as a Service (CaaS), enables the consumer
to utilize Enterprise level VoIP, VPNs, PBX and Unified
Communications without the costly investment of
purchasing, hosting and managing the infrastructure. With

the service provider responsible for the management and
running of these services also, the other advantage the
consumer has is that they needn’t require their own trained
personnel, bringing significant OPEX as well as CAPEX
costs.
STaaS - Storage as a Service
STaaS is fairly self-explanatory, the basics behind the
STaaS service is that the cloud provider rents out storage
space on their infrastructure in return for a monthly fee. The
reason STaaS can be appealing is due to economies of scale
within the service's infrastructure, this leads to providers
being able to rent out space at a lower cost than your
average business would be able to provide its own storage
solutions. Storage as a Service is often seen as an option to
solve the problem of offsite storage backup.
SECaaS - Security as a Service
Security as a Service acts as an outsourcing model for
computer and network security services. Security services
on offer include things such as anti-virus, anti-
spyware/adware and intrusion detection. When considering
the cost of ownership, SECaaS can be a cheaper alternative
to having your own individual or corporate security
protection.
DaaS - Data as a Service
Data as a service allows consumers to use a provider's data
on demand anywhere over a network connection (usually
the internet). DaaS providers both cleanse and enrich the
data and then offer it to different users, programs or
applications.
TEaaS - Test Environment as a Serivce
TEaaS or Test Environment as a Serivce (or "On-demand
test environement) is a model used to enable users to test
software. This is done by allowing users to store the
software and its associated data in the cloud, this is then
accessed through a web browser over an internet
connection.
APIaaS - Application Programming Interfaces as a
Service
APIaaS - Application Programming Interfaces as a Service
- Application Programming Interfaces as a Service is
another fairly self-explanatory service, it provides
consumers with a service to build and store API's and
efficient model of offering.
BaaS - Backend as a Service
Backend as a service is sometimes referred to as MBaaS
(Mobile Backend as a Service). This model of cloud
computing allows for consumers to link their applications to
back end cloud storage while providing other such features
including push notifications, internation with social media
and user management. BaaS is a comparatively new
development within the cloud computing universe, with
mainstream BaaS services being offered from around 2011.
As market availability is still ongoing process
AaaS - Analytics as a Sevice
Analytics as a Service is a cloud platform that allows users
to access powerful analytics tools hosted within the cloud.
This is a developing area within the cloud computing world
and industry experts are expecting more and more
companies within more and more industries to take
advantage of this technology.

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4097

Anything as a Service (XaaS)
Interestingly XaaS or ‘anything as a service’ is the delivery
of IT as a Service through hybrid Cloud computing and is a
reference to either one or a combination of Software as a
Service (SaaS), Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), communications as a service (CaaS) or
monitoring as a service (Maas). XaaS is quickly emerging
as a term that is being readily recognized as services that
were previously separated on either private or public
Clouds are becoming transparent and integrated. Yet an
ongoing offering and still available in multi-varients.

III. CLOUD OFFERINGS

So as the term ‘The Cloud’ finally breaks into the minds of
the masses and takes meaning, in this section we describe
numerous services that are offered by the Cloud, mature
them and enable consumers to fully understand their
benefits.

Fig.6- Cloud Offerings Model

a. Cloud Compute Services
Compute services are used by cloud customers to execute
their workload. To do so, customers may deploy their own
application components on the cloud provider’s
infrastructure. Different Cloud Service Models may be used
in this scope: Infrastructure as a Service – the customer
controls the complete operating systems and middleware
that the application requires; Platform as a Service – the
customer only maintains the application itself. The
complete required runtime environment is completely
maintained by the cloud service provider.
Elastic infrastructure
The infrastructure must support dynamic provisioning and
deprovisioning of resources. This requires the possibility to
start and stop preconfigured (virtual) servers and their
automatic integration in communication networks. Further,
the infrastructure needs to allow the dynamic allocation of
memory, processors, and storage etc. as well as the
monitoring of these system resources to determine the
utilization of the (virtual) servers. This functionality must
be offered through an API to be used by atomized
management tools and the applications that are hosted by
the environment. An elastic infrastructure allows the
management of (virtual) servers and other resources, such

as storage) through and API that offers start, stop, and
allocation operations as well as monitoring of resources.

Fig.7- Elastic Infrastructure

An elastic infrastructure supports the dynamic allocation of
(virtual) resources that constitute a common resource pool.
In case of server resources it allows dynamic starting and
stopping of preconfigured (virtual) servers[5]. This is
enabled by storing so called server images in an image
database. These (virtual) server images contain a
description of the hardware configuration, the operation
system, and possible additional middleware and software
components.
Additionally, an elastic infrastructure contains a resource
management component that handles the allocation of
physical resources when requests are initiated via the API.
Through a monitoring component information about
(virtual) resources, such as utilization, may be extracted
from the outside.
The elastic infrastructure forms the fundamental basis for
cloud computing. It is therefore mandatory for the cloud
service models, such as Infrastructure as a Service,
Platform as a Service, or Software as a Service.
VMware ESX, Xen, HyperV etc. are classical virtualization
environments that offer the functionality of an elastic
infrastructure.
Low Availability Computing Node
A computing environment shall be provided for services
whose availability is not critical. A large number of
commodity (virtual) servers is used that provide the
required performance and that provide the extraction of
monitoring information.

Fig.8- Low Availability Computing Node Figure

The health status of (virtual) commodity servers is
monitored so that a server failure can be detected.
Low available compute nodes usually constitute a public
cloud. Often, applications have higher availability
requirements than what is guaranteed by low available
compute nodes. The watchdog pattern shows how an
evaluation of the monitoring information and corrective

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4098

actions can lead to a higher availability of the system
composed of (virtual) commodity servers.
Many virtual servers of public clouds are offered at a low
availability. Sometimes, availability is additionally
expressed in an uncommon manner. For example, Amazon
guarantees an availability of EC2 instances of 99.95%
during a service year of 365 days

High Availability Computing Node
A computing environment shall be provided for services
whose availability is critical. A high availability compute
node is used that is specifically build to provide the
required level of availability and performance through
internal management functions[5].

Fig.9- High Availability Computing Node

The high available compute node continuously monitors
itself and detects failures and performance problems. This
information is used to react to faults and performance
bottlenecks automatically. Often, this is enabled by
redundant internal components that can replace failing ones.
Traditional mainframes such as IBM zSeries are built to be
fault tolerant and self-healing. They provide many
virtualization technologies similar to those used to realize
cloud computing.

b. Cloud Storage Services
Storage provides a large number of ways to store data while
working on the application. They needed to be flexible to
support a wide range of application requirements. Cloud
storage services offer centralized cloud-based storage for
applications or application components. Especially, if
compute services do not offer the required availability,
centralized storage is required to integrate several replicas
of application components. These methods are employed in
componentized applications and the watchdog pattern
specifically addresses availability concerns.

Strict Consistency
A storage offering usually consists of multiple replicas to
ensure fault tolerance. It is of major importance that the
consistency of the data contained in these replicas is
pertained at all times while the performance is of secondary
importance.
The highest level of consistency is granted if all replicas are
updated if the data contained by them is altered. However,
this would mean that the availability of the overall storage
solution is decreased drastically. It has to be ensured that it
is available even if not all replicas are available, but still the
correct version of the data is read. Access only subsets of
replicas during read and write operations to increase the
availability. The size of these sets guarantee that at least on
replica is read with the most frequent version at all times.
The used read and write operations are subsumed in an
ACID transaction.

Fig.10- Strict Consistency

Subsets of the available replicas are accessed during read
and write operations. Thus, the system is available even if
not all replicas are accessible. Strict consistency is
guaranteed through the size of the subsets of replicas that
are read or written. Considering the overall number of
replicas, the number of replicas access during read , and
those accessed during write , it is ensured that holds true for
every read and write operation. Therefore, each read
accesses at least one more replica than the previous write,
ensuring that at least one replica is accessed with the most
current version. The values for and are usually fixed at
design time and reflect the different requirements on read
and write performance. If write performance shall be
increased, then the number of replicas accessed during a
write is decreased and those during read increased, for
example.
Some storage solutions allow the specification of
consistency behavior on a per request basis. Therefore,
critical information can be retrieved following strict
consistency; less critical information is retrieved granting
eventual consistency.

Eventual Consistency
A storage offering usually consists of multiple replicas to
ensure fault tolerance. It is of major importance that the
availability of the data contained in these replicas is
increased while the consistency of the data is of secondary
importance.
Assuring consistency among many (geographically
distributed) replicas reduces the availability of the storage
offering since it makes it dependant on the network over
which replicas are updated. To handle possible partitions in
this network, traditional replica models read and write a
certain number of replicas to guarantee that at least one
replica is read with the current version. Depending on the
priority of read and write accesses the ratio of replicas that
have to read or written can be adjusted. Therefore, either
during read, write, or both multiple replicas must be
accessible which reduces the availability of the overall
storage offering. In certain scenarios consistency of data
can however be relaxed to reduce the number of replicas to
be accessed by operations. This increases the availability of
the storage offerings since it is more robust regarding
network partitioning.
It has however to be assured that changes to replicas are
eventually propagated to all replicas. If some replicas are
unavailable during a write the changes need to be stored at a
different persistent location and need to be executed once
the replica is accessible again. Additional challenges arise
when replicas in different network partitions are changed

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4099

independently and have to be merged once the network is
not partitioned anymore.
Eventually consistent data storage allows reducing data
consistency to increase availability and performance, since
the impact of network partitioning is reduced and fewer
replicas have to be accessed during read and write
operation.

Fig.10- Eventual Consistency

Eventually consistent databases increase the availability
during network partitioning at the expense that inconsistent
data can be read under certain conditions. This is achieved
as follows:
While strictly consistent databases ensure that always at
least one of the current version is read, eventually
consistent databases allow that obsolete versions may also
be read. This increases the availability of the storage
offering since only one replica has to be available to
successfully execute a read operation. Using this database
model it can also be avoided that writing multiple replicas
has to be executed as a distributed two-phase commit (2-
PC) to guarantee ACID behavior. Instead replicas are
updated asynchronously via transactional massages, for
example. This guarantees that after a network partitioning
problem is eventually resolved, changes to data are
propagated to all replicas. A “consistency window”
specifies how long this update via messages takes in
absence of network partitioning. However, using
eventually consistent storage also demands a certain data
scheme and / or operation that are idempotent, so that
changes to partitioned replicas can eventually be merged.
Amazon SimpleDB uses two consistency models, strict
consistency and eventual consistency.
Relational Data Store
An application uses a central database for storing data
elements and performs complex queries on them.
Applications often access a database remotely and perform
complex operations on the contained data elements. Queries
are sent to the database to retrieve matching data elements.
The more precise these queries can describe the required
elements, the less stress is put on the network transporting
data elements and on the application processing them.

Fig.11- Relational Data Store

The relationships between attributes of elements in one
table and elements in another table are expressed in a
database schema that describes the structure of the database
tables. Whenever a data element is created, altered, or
deleted it is verified that the relations described in this
schema are fulfilled.

Complex queries can be send to the database that
express ranges of and conditions on data element attributes.
Only the attributes that match the specified conditions are
returned to the querying application. SQL is a common
query language for this purpose.
A relational data store is offered by traditional data base
systems, such as IBM DB2, Oracle RDBMS, MySQL , or
Microsoft SQL Server. These can be also realized on top of
an IaaS cloud.
Blob Storage
A distributed application needs to manage large data
elements, such as virtual server images or videos, which are
too large for traditional databases.
In a distributed application data elements must be made
available to all application components and to distributed
users. Access to the data needs to be performed in a
standardized fashion and access control has to be
established.
Organize the data elements in a folder hierarchy similar to a
traditional file system. Give each data element a unique
identifier that can be used to access it over a network. Also,
establish access control mechanisms.

Fig.12- Blob Storage

The data elements are stored centrally and in
hierarchical folders. Within each folder every data element
is given a unique name. The combination of the position of
an element within the folder structure, its unique name, and
the service address form the address at which the element
can be accessed. This access is enabled using established
technologies, such as FTP, Rest over HTTP, SOAP over
HTTP etc.
The number of hierarchy levels in the directory structure is
sometimes reduced (see S3 below). Also, sometimes
automatic distribution about multiple geologically
distributed replicas is offered to guarantee locality of data.
Traditional Web an FTP servers function in a very similar
fashion. Amazon’s S3 services offers similar functionality
but only allows folders without subfolders (called buckets).
In Windows Azure similar functionality is provided by
Windows Azure Storage , a service that subsumes a
message oriented middleware, NoSQL storage, and block
storage.

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4100

Block Storage
Servers forming a distributed system shall access a central
high available storage as if it was a local drive.
Resources in clouds are often unreliable (low available
compute nodes). Therefore, the data that they access locally
shall in fact be stored in a high available central data store.
This way, if a server fails the data is not lost, but a new
server can be started to use the secured data.
Offer data elements in a central storage that can be accessed
by distributed servers and integrate them as local drives.

Fig.14- Block Storage

Server can integrate centralized files into their system and
treat them as if they were regular hard drives. Thus, they are
formatted with a certain file system and accessed through
the operating system of the server. Often, these servers are
virtualized, since the integration of files as hard drives is a
basic functionality of virtualization software.
Block storage is offered as a component of the Windows
Azure Storage Service and Amazon EBS [4].

NoSQL Storage
Data storage shall be provided that is distributed among
many resources and that frequently has to handle data
structure alteration.
Traditional relational database management systems are
often hard to scale-out, for example due to dependencies
between tables arising from foreign keys. The complexity
of join operations, if data from remote systems has to be
combined, forms an additional challenge. Those database
systems are usually configured to utilize the resources of a
central server or cluster optimally. However, cloud based
applications usually do not have access to centralized, high
performance servers but instead to a large number of
distributed, commodity systems. These applications need to
handle very large amounts of data and also need to be
adjusted to new user demands flexibly. Therefore, a
database solution is required that focuses on scaling out
rather than on optimizing the use of a single resource and
that can adjust flexibly to changes of the data structure.
Use a schema-free storage solution, with limited query
capabilities to enable extreme scale-out through easy data
replication.

Fig.15- NoSQL Storage

The resulting NoSQL databases either do not support any
schema at all or a very limited one. Often, they only allow
querying a single index parameter. This allows them to be
distributed among very many resources and the structure of
the handled data remains extremely flexible.
This of course adds additional complexity to the application
that uses such a data base. Changes to the implicit structure
of the data need to be handled by the application as well as
consistency checking. Also, no join operations are
supported, which leads to generally more data returned to
the application initiating the query. Traditional databases
tried to reduce this amount of data through sophisticated
join operations and conditional expressions. When using a
NoSQL database this has to be implemented on the
application level.
To increase availability and performance even further,
NoSQL storage solution often display eventual consistency.
But strict-consistency solutions are also possible. In the
case of Amazon’s SimpleDB this can even be specified on a
per-request basis.
c. Cloud Communication Services
Applications running in the cloud rely on different
communication services, because of the distributed nature
of cloud resources. These communication methods are used
cloud internal, for example, to exchange messages between
application components. Further, communication services
enable the integration of clouds with each other or with
traditional data centers into hybrid clouds.

Message-Oriented Middleware
Different applications usually use different languages, data
formats, and technology platforms. When one application
(component) needs to exchange information with another
one, the format of the target application has to be respected.
Sending messages directly to the target application results
in a tight coupling of sender and receiver since format
changes directly affect both implementations. Also, direct
sending tightly couples the applications regarding the
addresses by which they can be reached.
Connect applications through an intermediary, the message
oriented middleware, that hides the complexity of
addressing and availability of communication partners as
well as supports transformation of different message
formats.

Fig.16- Message Oriented Middleware

Communication partners can now communicate via
messages without the need to know the message format
used by the communication partner or the address by which

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4101

it can be reached. The message oriented middleware
provides message channels (also referred to as queues).
Messages can be written to these queues or read from them.
Additionally, the message oriented middleware contains
components that route messages between channels to
intended receivers as well as handle message format
transformation.
A message oriented middleware is often used, if data needs
to be exchanged in a responsive manner. If larger amounts
of data need to be exchanged applications can be integrated
through file transfer or by sharing a common database.
Exactly-once delivery
Communication partners exchange messages via a message
oriented middleware.
Even though the use of reliable messaging avoids
duplication of messages in general, implementation
specifics may still lead to message duplicates. This affected
by the design decision how long to wait for a system to
recover eventually from its persistent storage after it
became unavailable. Sometimes the timeliness of messages
demands resending them. Also, in some scenarios,
especially regarding business to business interaction,
reliable messaging may not be available at all. Under these
conditions duplicate messages need to be handled.
Associate messages with unique identifiers and use filters to
delete duplicates.

Fig.17- Exactly-once delivery

Whenever a message is created it is associated with a
unique identifier. This is used by a filtering component on
the message path to delete duplicates. It does so by storing
the identifiers of messages it has already seen. The
identifiers of messages passing through this filtering
component are then compared to the identifiers that have
been recorded to identify and delete duplicates. A central
design decision is the size of the list that stores message
identifiers, because it dramatically affects the robustness of
the solution and its performance. Often, messages are
associated with a time frame in which they are valid to limit
the size of message identifier lists.
The filtering of messages can also be part of the receiver
instead of being implemented in the message oriented
middleware. This would then form an idempotent
components.
The mentioned message filter is described as a separate
pattern in.
At-least-once delivery
Under some conditions receiving duplicate messages is
uncritical. For example, if a database, like an organization
employee directory, is queried using messages the re-
execution of a query does not affect the state of the
database. Therefore, the additional overhead to avoid the

occurrence of message duplication during their transmission
shall be reduced while still guaranteeing that a message is
received.
Acknowledge that messages are received and retransmit the
messages that have not been acknowledged.

Fig.18- At-least-once delivery

The receiver of messages sends special acknowledge
messages to the sender. If the sender does not receive such
an acknowledgement message in a given time frame it
retransmits the message. Thus, messages, which are lost
due to communication errors, are still received eventually.
However, duplicate messages can occur, for example, if an
acknowledgement message is lost.
To reduce the communication overhead, acknowledgement
messages can be sent either after each individual message
or after an agreed upon number of messages.
If sender and receiver of messages communicate via a
queue the acknowledgment is not sent to the sender of the
message but to the queue. A receiver removes the messages
from the queue and acknowledges when he has finished
processing it. Instead of deleting the message, after its
removal from the queue, the messaging system keeps it in
persistent storage. If the acknowledgement is not received
after a certain time period, the message is put back on the
queue.
Today, all cloud messaging services guarantee the
described at-least-once behavior. Amazon SQS and
Windows Azure Storage service both implement the
version of this pattern where messages are put back on
queues automatically if receivers fail to acknowledge their
processing.
Reliable Messaging
When messages are exchanged in distributed systems,
errors can occur during the transmission of messages over
communication links or during the processing of messages
in system components. Under these conditions it shall be
guaranteed that no messages are lost and that messages can
be eventually recovered after system failure.
Message exchange during communication partners is
performed in under transactional context guaranteeing
ACID behavior.

Fig.19- Reliable Messaging

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4102

The message transfer from one communication partner to
the other is performed under transactional context.
Especially, this transaction subsumes the operation
performed to store the messages in persistent storage. Thus,
if an error occurs during message receiving, sending, or
processing the transaction can be compensated transferring
the overall system back to a correct and consistent state.
Sometimes not every communication partner has access to
persistent storage. In this case the receiving of a message is
contained in one transaction with its processing and the
sending of another message to a communication partner that
has access to persistent storage.

In the cloud, there are several messaging systems that
can be accessed as a service, such as Amazon SQS or the
queue service part of Windows Azure Storage. The cloud-
based offerings however differ regarding the granted
delivery model. They offer at-least-once delivery.

REFERENCES
[1] Nikolas Roman Herbst, Samuel Kounev, Ralf Reussner, Elasticity in

Cloud Computing: What It Is, and What It Is Not,USENIX
Association ,10th International Conference on Autonomic
Computing (ICAC ’13),pp-23-27

[2] Salesforce.com Inc.: CRM & Cloud Computing. Available at:
http://www.salesforce.com/

[3] http://aws.amazon.com/what-is-cloud-computing/
[4] http://aws.amazon.com/rds/
[5] http://www.cloudcomputingpatterns.org
[6] Amazon.com: Simple Queue Service. Available at:

http://aws.amazon.com/sqs/
[7] Microsoft: Windows Azure Storage. Available at:

http://www.microsoft.com/windowsazure/storage/

AUTHOR

Reema Ajmera received M.Sc.(CS), M.Tech.(CS) and Doctorate
(Comp. Sc. Eng.) Degrees in 2004, 2007, and 2013 followed by worked
as software developer for three years in a MNC and then joined Jaipur
National University(JNU) as Assistant Professor, School of Computer
and Systems Sciences in 2007. Research interest includes Agent Oriented
Software Engineering, Cloud Computing, Agile Testing and Software
Re-Engineering. Active blog provider and technical reviews on many
research topics.

Rudra Gautam received Diploma(CS), BCA, MS(CS), MSC(IT) in
2004, 2006, 2008, followed by working in multiple MNCs and holding
12+ years of experience in software designing, architecture and
development. Expensive experience in software product development
and architecture since 2001. Started professional career after diploma and
continuing higher education parallel to work. Research interest in Cloud
Computing, Cloud Management and Network Architecture. Technical
evangelist and blog writer. Expertise in enterprise portal, digital
commerce and CDN implementation.

.

Reema Ajmera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4095-4103

www.ijcsit.com 4103

